1,801 research outputs found

    The height dependence of temperature - velocity correlation in the solar photosphere

    Full text link
    We derive correlation coefficients between temperature and line-of-sight velocity as a function of optical depth throughout the solar photosphere for the non-magnetic photosphere and a small area of enhanced magnetic activity. The maximum anticorrelation of about -0.6 between temperature and line-of-sight velocity in the non-magnetic photosphere occurs at log tau5 = -0.4. The magnetic field is another decorrelating factor along with 5-min oscillations and seeing.Comment: In press,"Modern Solar Facilities - Advanced Solar Science", (Gottingen), Universitatsverlag Gottingen, 139-142, 200

    Civil Rights - Housing Law - Effects of Racial Concentration in Renewal Area

    Get PDF
    The United States Court of Appeals for the Third Circuit has held that the Department of Housing and Urban Development\u27s approval of an urban renewal plan, by concentrating on land use factors without inquiry into the effects of the type of housing on racial concentration, does not comply with the Housing Act of 1949 and the Civil Rights Acts of 1964 and 1968. Shannon v. United States Department of Housing and Urban Development, 436 F.2d 809 (3d Cir. 1970)

    Up-dating the Cholodny method using PET films to sample microbial communities in soil

    Get PDF
    The aim of this work was to investigate the use of PET (polyethylene terephtalate) films as a modern development of Cholodny’s glass slides, to enable microscopy and molecular-based analysis of soil communities where spatial detail at the scale of microbial habitats is essential to understand microbial associations and interactions in this complex environment. Methods. Classical microbiological methods; attachment assay; surface tension measurements; molecular techniques: DNA extraction, PCR; confocal laser scanning microscopy (CLSM); micro- focus X-ray computed tomography (μCT). Results. We first show, using the model soil and rhizosphere bacteria Pseudomonas fluorescens SBW25 and P. putida KT2440, that bacteria are able to attach and detach from PET films, and that pre-conditioning with a filtered soil suspension improved the levels of attachment. Bacteria attached to the films were viable and could develop substantial biofilms. PET films buried in soil were rapidly colonised by microorganisms which could be investigated by CLSM and recovered onto agar plates. Secondly, we demonstrate that μCT can be used to non-destructively visualise soil aggregate contact points and pore spaces across the surface of PET films buried in soil. Conclusions. PET films are a successful development of Cholodny’s glass slides and can be used to sample soil communities in which bacterial adherence, growth, biofilm and community development can be investigated. The use of these films with μCT imaging in soil will enable a better understanding of soil micro-habitats and the spatially-explicit nature of microbial interactions in this complex environment

    Spectral Characteristics of the He I D3 Line in a Quiescent Prominence Observed by THEMIS

    Full text link
    We analyze the observations of a quiescent prominence acquired by the Telescope Heliographique pour l'Etude du Magnetisme et des Instabilites Solaires (THEMIS) in the He I 5876 A (He I D3) multiplet aiming to measure the spectral characteristics of the He I D3 profiles and to find for them an adequate fitting model. The component characteristics of the He I D3 Stokes I profiles are measured by the fitting system approximating them with a double Gaussian. This model yields an He I D3 component peak intensity ratio of 5.5±0.45.5\pm0.4, which differs from the value of 8 expected in the optically thin limit. Most of the measured Doppler velocities lie in the interval ±5\pm5 km/s, with a standard deviation of ±1.7\pm1.7 km/s around the peak value of 0.4 km/s. The wide distribution of the full-width at half maximum has two maxima at 0.25 A and 0.30 A for the He I D3 blue component and two maxima at 0.22 A and 0.31 A for the red component. The width ratio of the components is 1.04±0.181.04\pm0.18. We show that the double-Gaussian model systematically underestimates the blue wing intensities. To solve this problem, we invoke a two-temperature multi-Gaussian model, consisting of two double-Gaussians, which provides a better representation of He I D3 that is free of the wing intensity deficit. This model suggests temperatures of 11.5 kK and 91 kK, respectively, for the cool and the hot component of the target prominence. The cool and hot components of a typical He I D3 profile have component peak intensity ratios of 6.6 and 8, implying a prominence geometrical width of 17 Mm and an optical thickness of 0.3 for the cool component, while the optical thickness of the hot component is negligible. These prominence parameters seem to be realistic, suggesting the physical adequacy of the multi-Gaussian model with important implications for interpreting He I D3 spectropolarimetry by current inversion codes.Comment: 25 pages,1 movie, 10 figures, 2 tables, 2 equations. The final publication is available at Springer via http://dx.doi.org/10.1007/s11207-017-1118-z The supplementary movie is available for viewing and download at https://www.dropbox.com/s/7tskvnc593tlbyv/Prominence_HeID3_GONG_AIA.mpg?dl=

    A rigorous evaluation of crossover and mutation in genetic programming

    Get PDF
    The role of crossover and mutation in Genetic Programming (GP) has been the subject of much debate since the emergence of the field. In this paper, we contribute new empirical evidence to this argument using a rigorous and principled experimental method applied to six problems common in the GP literature. The approach tunes the algorithm parameters to enable a fair and objective comparison of two different GP algorithms, the first using a combination of crossover and reproduction, and secondly using a combination of mutation and reproduction. We find that crossover does not significantly outperform mutation on most of the problems examined. In addition, we demonstrate that the use of a straightforward Design of Experiments methodology is effective at tuning GP algorithm parameters

    How Noisy Data Affects Geometric Semantic Genetic Programming

    Full text link
    Noise is a consequence of acquiring and pre-processing data from the environment, and shows fluctuations from different sources---e.g., from sensors, signal processing technology or even human error. As a machine learning technique, Genetic Programming (GP) is not immune to this problem, which the field has frequently addressed. Recently, Geometric Semantic Genetic Programming (GSGP), a semantic-aware branch of GP, has shown robustness and high generalization capability. Researchers believe these characteristics may be associated with a lower sensibility to noisy data. However, there is no systematic study on this matter. This paper performs a deep analysis of the GSGP performance over the presence of noise. Using 15 synthetic datasets where noise can be controlled, we added different ratios of noise to the data and compared the results obtained with those of a canonical GP. The results show that, as we increase the percentage of noisy instances, the generalization performance degradation is more pronounced in GSGP than GP. However, in general, GSGP is more robust to noise than GP in the presence of up to 10% of noise, and presents no statistical difference for values higher than that in the test bed.Comment: 8 pages, In proceedings of Genetic and Evolutionary Computation Conference (GECCO 2017), Berlin, German
    • …
    corecore